Ir al contenido principal

Ondas Sísmicas

Como se propagan las ondas sismicas
Aunque ya todos ya todos estamos más que familiarizados acerca de qué son los terremotos, cómo se producen y cuáles son sus consecuencias, las explicaciones referente a cómo se propagan las ondas sísmicas, problema fundamental de esta temática, suelen ser algo escuetas. Por esta razón es que hoy intentaré explicarte un poco más sobre cómo es que se produce dicho fenómeno de una forma más simple y comprensible para aquellos no versados en sismología, la ciencia que estudia los terremotos. Así que sin más, dediquémonos a conocer cómo se propagan las ondas sísmicas.

¿Qué son las ondas sísmicas?
“Vamos por partes”, dijo Jack el Destripador. Las ondas sísmicas se encuentran dentro de la categoría de ondas elásticas, que son aquellas perturbaciones tensionales que se propagan a lo largo de un medio elástico (entendiendo que un medio es elástico cuando puede sufrir deformaciones reversibles al verse sujeto a la acción de fuerzas exteriores). En este caso, el medio sería el terreno, el cual es deformado hasta cierto punto por las ondas, pero que puede recuperar parte de su estructura anterior, cuando la acción de las ondas cesa o culmina.

Llamamos ondas sísmicas a las ondas que se propagan en el interior de la Tierra. Mucho de lo que sabemos acerca de la Tierra procede del estudio de las ondas sísmicas y de cómo éstas viajan a través de diferentes tipos de materiales. El estudio de este tipo de ondas nos ayuda a entender mejor a los tan poco predecibles terremotos y a saber cómo construir diversas cosas que sean capaces de soportar los diferentes tipos de ondas relacionadas con los terremotos.

Como se propagan las ondas sismicas

¿Cómo se propagan y cómo se clasifican las ondas sísmicas?
A partir del instante en que se rompe el equilibrio entre esfuerzo y deformación, por ejemplo cuando cesa el esfuerzo aplicado, la deformación se propaga a través del medio rocoso como una onda elástica. Son varios los tipos de ondas que se generan y propagan a partir de ese momento.

A efectos prospectivos cabe clasificarlos en dos grupos:
  • Ondas volumétricas que se transmiten a través del material pudiendo sufrir en su tránsito procesos de refracción y reflexión. Son las ondas de comprensión (P) y las de cizalla (S).
  • Ondas superficiales, tipos Rayleigh y Love que se transmiten por la superficie con mínima penetración en el material. El estudio de estas ondas en términos prospectivos tiene menor interés que el de las ondas volumétricas aunque existen métodos específicos basados en su estudio como el del Análisis Espectral de las Ondas Superficiales.
A partir del punto interior de la tierra donde se produce un sismo se originan diversas ondas elásticas que se propagan en todas direcciones. estas ondas son detectadas por sismógrafos, instrumentos de registro continuo y que consisten simplemente en un péndulo al que se acoplan diversos mecanismos de amplificación, de amortiguamiento, de registro. etc. Un estudio detallado de las señales sísmicas inscritas en los sismogramas, como se les denomina a los registros de los sismógrafos, permite conocer las principales características del temblor que las produjo. Puesto que el movimiento producido por un temblor tiene tres componentes (una vertical y dos horizontales) para resgistrar cada una de las componentes.

El estudio de un gran número de sismogramas ha permitido diferenciar dos tipos principales de ondas sísmicas: las ondas de cuerpo y las ondas superficiales.

Ondas de Cuerpo (Volumétricas)

Las ondas de cuerpo son las más rapidas, y por lo tanto son las primeras que registran los sismografos. Estas ondas se dividen a su vez en longitudinales o compresionales (ondas P) y en transversales o de corte (ondas S).

Ondas P
Son las primeras en llegar a los sismógrafos por tanto las más veloces.
  • Dependen de la compresibilidad del medio (como el sonido): ondas de compresión. Se transmiten por sucesivas compresiones y descompresiones del medio, con cambios de volumen.
  • Como los sólidos, líquidos y gases se pueden comprimir, se propagan por todos los medios.
  • El movimiento de vibración de las partículas es paralelo a la dirección de propagación, lo que implica mayor velocidad.

Ondas S
Son las segundas en llegar a los sismógrafos por tanto menos veloces que las P.
  • Dependen de la elasticidad (rigidez) de las rocas: ondas de cizalladura. Se transmiten por una deformación cizallante (↓) que no hace variar el volumen.
  • Como los sólidos tienen propiedades elásticas y los líquidos y gases no, sólo se propagan en medio sólido.
  • El movimiento de vibración de las partículas es perpendicular a la dirección de propagación, lo cual supone un mayor recorrido (menor velocidad).

Ondas Superficiales

Las ondas superficiales representan la energía que ha sido atrapada en la superficie terrestre y son generadas por la interacción constructiva de las ondas de cuerpo con la estructura interna de la tierra. Este tipo de ondas se propagan paralelas a la superficie libre de medio. En los sismos poco profundos son las que transportan más energía las de mayor efecto destructor. 

Otra característica de este tipo de ondas es que tienen una amplitud maxima en la superficie libre y disminuye exponencialmente con la profundidad. Pueden ser registradas a grandes distancias, ya que a diferencias de las ondas de cuerpo, sufren una dispersión goemétrica con la distancia que es mucho menor (~1/√R para las ondas superficiales, mientras que para las ondas de cuerpo es ~1/R). 

Existen basicamente dos tipos de ondas superficiales: las ondas de Rayleigh y las ondas de Love. Estas ondas juegan un papel muy importante en la sismología, no sólo porque son las ondas de amplitud más prominente en un sismograma registrado a gran distancia, sino también porque pueden ser utilizadas en estimaciones del momento sísmico, del mecanismo focal, de la profundidad focal de sismos remotos y en la descriminación entre temblores y pruebas nucleares.

Ondas R (Rayleigh)
Cuando un sólido posee una superficie libre, como la superficie de la tierra, pueden generarse ondas que viajan a lo largo de la superficie. Estas ondas tienen su máxima amplitud en la superficie libre, la cual decrece exponencialmente con la profundidad, y son conocidas como ondas de Rayleigh en honor al científico que predijo su existencia. La trayectoria que describen las partículas del medio al propagarse la onda es elíptica retrógrada y ocurre en el plano de propagación de la onda. Una analogía de estas ondas lo constituyen las ondas que se producen en la superficie del agua.


Ondas L (Love)
Otro tipo de ondas superficiales son ondas de Love llamadas así en honor del científico que las estudió. Estas se generan sólo cuando un medio elástico se encuentra estratificado, situación que se cumple en nuestro planeta pues se encuentra formado por capas de diferentes características físicas y químicas. Las ondas de Love se propagan con un movimiento de las partículas, perpendicular a la dirección de propagación, como las ondas S, sólo que polarizadas en el plano de la superficie de la Tierra, es decir sólo poseen la componentes horizontal a superficie. Las ondas de Love pueden considerarse como ondas S "atrapadas" en la superficie. Como para las ondas de Rayleigh, la amplitud de las mismas decrece rápidamente con la profundidad. En general su existencia se puede explicar por la presencia del vacío o un medio de menor rigidez, tiende a compensar la energía generando este tipo especial de vibraciones.


Comentarios

Entradas populares de este blog

Permeabilidad y Permitividad

Permeabilidad La permeabilidad magnética nos indica con qué facilidad atraviesa el campo magnético la materia, o sea si esta es buena conductora o no del campo magnético. La permeabilidad es una caracteristica magnética de la materia (por ejemplo del aire, cartón, aluminio, hierro). La pemeabilidad como se verá es baja en el vacío y es elevada en materiales como el hierro. Permeabilidad magnética de un material:  µ =  µ r * µo Donde:                  µ r  = permeabilidad relativa               µo  = permeabilidad del vacío                µo   = 4 Pi * E-7  = 4 x 3.14 x 10-7 = 12.56 x 10-7  (T * m / A =  Wb / A * m = H / m) UNIDADES                m = metro                A = amperio                T = tesla                Wb = weber                H = Henrio A continuación, presentaremos la permeabilidad de algunos materiales: Material Permeabilidad Relativa Aire 1.00 Aluminio 1.000023 Cobre 0.99999 Oro 0.9

Antena Parabólica

La antena parabólica es un tipo de antena que se caracteriza por llevar un reflector parabólico, cuya superficie es en realidad un paraboloide de revolución. Las antenas parabólicas pueden ser transmisoras, receptoras o full duplex, llamadas así cuando pueden trasmitir y recibir simultáneamente. Suelen ser utilizadas a frecuencias altas y tienen una ganancia elevada. En las antenas parabólicas transmisoras, la así llamada parábola refleja las ondas electromagnéticas generadas por un dispositivo radiante que se encuentra ubicado en el foco del paraboloide. Los frentes de onda inicialmente esféricos que emite ese dispositivo se convierten en frentes de onda planos al reflejarse en dicha superficie, produciendo ondas más coherentes que otro tipo de antenas. En las antenas receptoras el reflector parabólico se encarga de concentrar en su foco, donde se encuentra un detector, los rayos paralelos de las ondas incidentes. Diseño Su forma no alude a una cuestión estética ni a

Antena Monopolo

Una antena monopolo es la mitad de una antena dipolo, casi siempre montado sobre una especie de plano de tierra. El caso de un monopolo de longitud L monta sobre un infinito plano de tierra se muestra en la siguiente figura: Usando la teoría de la imagen, los campos por encima del plano de tierra se puede encontrar utilizando el equivalente fuente (antena) en el espacio libre como se muestra en la figura (b). Esto es simplemente una antena de dipolo del doble de la longitud. Los campos por encima del plano de tierra en la figura (a) son idénticos a los campos en la figura (b), que se conocen y se presenta en la dipolo . Los campos por debajo del plano de tierra en la figura (a) son cero. Por lo tanto, podemos asegurar que una antena monopolo es una antena constituida de un solo brazo rectilíneo irradiante en posición vertical sobre la tierra.  Se considera que el monopolo no es una antena completa, y que necesita ser completada por un plano de masa para poder funcionar co